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ABSTRACT

A Galerkin inethod for systems of PI)E's ill circular geometries is presented with motivating

tyrol)Ictus being drawn fronl structural, acoustic and structural acoustic applications. Depend-

irrg Ilt)()n the application under consideration, t)iecewise st)lines or Legendre polynolnials are

used when approximating the system dynamics with modifications included to incorporate

the analytic solution decay near the coordinate singularity. This provides an efficient method

which retains its accuracy throlrghout the circular domain without degradation at the singu-

larity. Because the t)roblems Imder consideration are linear or weakly' nonlinear with constant

or t)iecewise constant co(,fti(:ients, transform methods for" the problems are not investigated.

While the specific method is developed for tire 2-D wave equation on a circular domain and the

e(tuatiol! of transverse motion for a thin circular plate, examples demonstrating the extension of

the t.echtliques to a fully coupled structural acoustic system are used to illustrate tlle flexibility

of the method when approximating the dynamics of more complex systems.
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1 Introduction

,+\ ('()flit]It+it +t('l_ itJ ttt+ttl_,' _t l'It<'t,a_'+tl, +t<'(>_l+_tit' +lilt] If,lit] +tl)l)li<'+tt, itm_ it_'_'ol'_','+ t h( + +(_l,tti,Jtt u,f l>+tt+-

I i+_1 (liiI+(,r(,tlti,+ll ('(ill;It +(+tit (]'])E'+) n+(:,(h'litt_; th(' l,]I',':'+i<'+ ¢,f +l _\'+t.(']ll ll+i,+'iIlU++l _']r(+111+tr ,_('()tll<'t t'y.

l'Gx,_t+ll)l('s _.)1";t[JlJli('_+tlit._tl+ ill ',':hi('ll this is ]t]ll+()rl,+itlt ill('llt<l(' th<, (lt,t.(.t-m+t+;ttit_tl _tl<l (()ilt, rtJ] (;if

_'it'('itl+_r l)l;tt( , +ttl+l (",'litt,lri<++t] +ll('ll <l\:tl+tltli_'s. th(' t+l(+tlt'liti+_ ,+ttJ_l +-It,t('tlll+ttitJll t+f lltJ+st' ,,,:ithitl +_

[_:lit+[]t'i<'+tl _',_t','+ly, tlt(' ++llllll;+tt]()ll (+'I' ll_i<l lh,+,',' ,+_t_<]l>t_tll(i+;t"+ ' l+tv('r _r(::,'tll it+ +i l)il>('. +_.'-+"::¢'II

<+t+iI_t_Itt+<'_+tl)I(" (:,t.l_(,t+ +ti)l>li('+_tiutls +liV(Jlx:i]l,_ <'it'_'_l],_r [](+t_++titt+. [)u(' t(, th(, ('()t]tl)l(-,xity ()f t l_(+

])l'tJl_,lt,itl+. 11¢)'.+v('\'(,1'.,_tt_,+_l_'l,i<' .'-+(;,]itt,it)lt+ _+it:+tll'_ ('+'tlllltYl 1)(' (+l)t+t]t+('(l +_+(l till( + tt+,_st ti_tt+t('ri('_-_lly

;tl)l)tt_xiltl,+_1(' tiff' +l_,'t++_tt+i<++,_I_<lt't" ('(;,li+i<[('t';+tt.+t+It.

]"t'(,t_+ ,g(']}_+|l'_+l+ i(J]l <+1' \';-tt']i+tll]('.'-+ ;t]_<l t]'_ttt<',_,ti(+t_ (;f l h(' r('s_tltitl_ iHli_it.( + s('t'i('+. ++tl_l)t't,:'.:im+tti()tt+

ira tl,(, ft)t'tt] (_f tt+t++l+tl ('×l)z_ll+it_i_ +llVtJl'.,'+llff I+(,++.:,I ('()ll]l)(+tl('t]t,+ ('+ttl ()('(';-t++-+it+t_+tllv l)(' _tn('(] t.(+

+_]>l)t't_Xittl+_t(' l'l)IC (l',.:I_+tlt+i_'s. ll()w(',:('r, tt_u(i+_l ('xi>,_t_+i(Jt_s (_-_tt I)_' (h,;(,t'_it_(,(l for" (+,t_l_,"_ lituit.<'(l

t+_tlt_l>('t' ()I' ;tl_lJli(:+_t itJtt.'-, +_t_<lh('t_('(' ()I_(' tt+_tst tJl'1(+'t_ ('tt_l+l(>y tilt)I+( , g('t_('t+_l l.('['ht_i(l_('+ s,t<'h +is iit+it.('

<lill'('t'('II('('. lit_it(' <'l('lll('i_l, +l)liu<'. ()I' +l+(','tt'+tl ('Xl+;_li+it:,li:..+ iI_ (._I'<l('t+ t(_ ,+g_l)rt_xit+t+:tt.<' the, (lVtl;+tlll]('+

ul' tl_(" s.',,+t(,tt] itt_<l<,r ('(JI+,'-,]<l('t+_ti(_i_.

Ii_ tl_(, ('+-tt(,._(.+tN (j[' +l)(,<.t r+tl I_('t ]_u<]+ f(_r <'it<'ttl+tt" ,_('(Jltl('tt'i<,s. (;+t](,t'l.:itt. <'(Jt[t}<',_ttit}ll +ttl<] t_+lll

t+l('t tt<)_]+ ]l;tV(' ]_<.'t'll ."+1,t<]i('<l '::it I+ t l_,:' ('llui('(' (,t' n+('tl,t,,t <]('l>('tt<]i,_ ,tl)t)tl t.h(' t)rol)h'm i)(,itt< ('¢:,u-

+i,h'r(',l. T(, (It, It'. ttl_I_'}_ t)l+ tlli+ r(,_(,+,r(+l, ],+t_ ,'('t_t<,]'('(l ,_rt,,tt,(l t l_(' +im,tl+ttiu, tl u,f ll,ti<l ll¢:,w +_],(I

l,t+_t],+l+_I'_,' l+t',:('t' ._rt)'+vt Ii ktll(_ ]tl l lt('+(' ('+t+('S. ('t+tl)It+t,'-+is It+t+ _tS_t_+tlly I)('('Z_ l>l+t<',t'(l tilt <'(Jllt>t:+ttitm ,l_tt'

it+ s,t('_'('s+ it+ h+u_tllilt_ _'tJ_ttl>l('x l+(+,tl_(lat'\: (:()tl(]i't. iOtlS, +,:+_ri+_l_l(,t'(,t,l+li('i._,t_ts, +ttt<] stt'tJ]_q t_t)t_lit_-

(,+,rit.it,+ [l(;. 17]. (;+,l(,tl._it_ ]t+t.tl,o,l,,-+ fur tit,,,,,,+ t:,tt sl,h(.tt,.,-+ +,t(, (li+<,_s.+t,(t ilt [15]. l)zlt thi.,-+ i+ ,l(m<,

I>rit+l,-ttil.,. _ itl t.}_(, t't.,izt.(,xt ot" t:ollri('r t,×l)+tl_sitJu._ itt'++t+l',+itt_ tl_t, ,'.+trtmg f()t'zt_ t)t' t.ht, t_,._(lt'lit_4 tl()w

(',:l,t;_tiul_,,+ ',',+tilt tJl_],,: +t I_t'i(,t ' (lis(',t.'<+i()tl _'t_l_('(,t'_it_g ]+('g('t_tll'(, I_+:t+(,.,.+I)('itl_ ittt'luth,<t. ,_\+ t_ut.t,<l itl

1}ti,n ],_t1('t I'('['('r('Ii['('. <';it+( ` titus| l)(' ('x('rt'i+(,d ',,:h('t_ ,_tl.+l)]5"itl+g _'tlly Of 1][(' l)r<'\'it)_i+]y t_t('ttti(,_('(l

lt'_'l_t_i(t_tt','+ ((;+tlt'r],;i_l, ['tJ]tt+('+tliult tJ]' t.+_u) lt_ t)t'()l)l('tt_+ '::it.]t ('t:,(>r(li_t;-tt.t, .'-;itl_lt],'+_l'it.it..,+ .'-++tlt'(' tilt'

itl_'tJt'r<'(+t ,+_i>I)li('_ttit)t_ (.,f' l)()l(' ('(+t_tlili(+_ ['+tu si_ttili('+:tt_t.ly [h'+_r_uh" th(, _t.('('11l'+tcv tJf |11(" tt_('th()(l

,+_s ,.':<'ll +is ittlt'()(ll_('(, sII't.+IIX I_lut+('t'i('+tl itt++-+t,_tl)iliti(,s. Thi+ t'('l+('r,_'_('_, _tl._,.., itt<'l_th,: ,+t _('t+('t'+-tl ('t>tn-

l>_-tliSt+ll l_(,lw<,(,t_ lit(, t'(,+_tlt.+ ul>t+_it_(,(] ,,','itl_ +_u-[+u+(, ]_trtttu, tti(+s ((,i_('itf_ttl('l.i<.Jll.'-+ t)[" Ill<, ],:+tl+],+_('i+ttt),

itltJ(]iiit,(] l-_u},(,t+t ['_tti(.ti(_t_+ ,_t_t] ]'+(),tt'i(,r +('t'i('s _+it_ ('()ll_.)('+tlitJll +tl_(l (++tl('_+l,:itl t_t<,'lltu, tl+ it_ t,}_(+

[_t'(,>t,l,((, tJI' ll_(, ('(,(,t'(lit_,+(tt, +iI_t_l+trity. Th(" us(, uf tlt(, _+u<[iii(,<[ ](t>l_(,rt l'_tt_t-ti(_,t_:+-++ttt(l t,<'(']_-

lit(lilt':"+ l'tJt il'lll++t'(._",'+ll_ lilt'if ('tJtll]+1.+t;'tl+ll_ ;+tli(l t't_l)It+yi_ l'+t+t, tt',_ttl+l't)t'tt++_ +.'+ f_trth<'r +:ul(lt'('.'.++('<t i_

[I()]. l:i_l+_ll.v, _('tlt'l';tI t>\'('t'\+i('v_'. '., ('t,+tit'('l'ttill_ ill(' +t])])]i<'+tt+tJtl ()i' +l+('('Ir,:t] lll('t}]tJ<I+ t.t> l)t't)l)h'Itl+

,.','it]_ ('t)tJt'(lill+tt.t' Sill_lll+tt']t]('+ (';-t.tl t)t' t'(,l_t+_l it_ [I l, 12]. \:_'(' I:,t,i_,t t_ltl t.l_+_t, lh(' ('_tl)h,+t+i+ +tt iht'.'<('

tt't't't't'_('('.,, ('t't,t,:'t'+ I)rilt_+trily +trt_,_t_(l t l_(' +l('v('l,.>t)t_tt't_t ut" Ultm('t'i('+tl l_('tl_t,(l+ t'u,t' th:,x',_+ ,_,t"v+trit,,_+

t.',:l)t'_ +_tl(] ]_,:'_('(' t.l_(' tt'_ht_i<lta(,_ ,_tr<' ,..,t't('t_ ._(mrt,([ t.,.:,,:,_.r([ t.h(, +tl)])rt:,xit_t,+_t i()tl ,.,t+,,+trtmgly tttmlit_(,ar

tJl,('r:+_i(,t'+ x,,'l_i<'h r('+l_tit'(,+ i t',++_t_+l't,rt]]I_t'tl_t,<l:-+ t.(, l'+_('ilit+ttt' ('fli('it'ul it]tl,]t,ttt(,t+t;_ti<+,Ii. Whil(" t.h('+('

It'_'l_t_i+l_l('.'-; ',',,ill ('h,+tt']'_' ,,,:t+t+].:['u,r lit_<',_(I l>t'(Jl)l(,tt]+ i_,.,t:,l,+,it_+__.;('ir_'_l++tr <_t>t_t+_i_+, t],('y ()l'1('t, +trt, t_)t

tJ])li]t_,+t] t_tJt' t lt(, I)(,+I. _'h(>i<'<+ ftJr t.h(, +tl)l>li('+ttit;,t++ _t]J([('t' (+(m._i<](,t+ttit+t_.

II_ II+i+ l)+_l+<,r+ +,,,(, l+,t'(,s(,t_t ,_t(;;_h'rl,:it_ t_(,t]_t_<l f'_)r lit_(,+tt • ()t + ',','('+_l,:I':t_t>t_li_t',+_t' l)rtJl)h'ttt+ l_+t\'it_

('it'(';tl+tl' (_t+ _',,[i_+(Iti(+_] (It_,It|;-titi.,.+;It+ill_ l)i('('("V':iS(' +l+litt(' :+u_(l +l)_'('tt++t] ])+t+t'+. T,,','tJ _+tl'<+'+t+l'l'()t]t v,+hi<'h

'::t' ,,,,'ill tlt',+::: ('+',:+t_t_l)h'._:+tt't' +t r,t<'t_H'+tl (]\'t_+_tt+]('s +tr+<_+t('tJllst,]<'s (,_t +(,;-tt'('h t_I' lh( + lit('t'+_tltr< , rt,v<,+tl+

['t,w t+_tlttt,t'+(-,_l 1(,<'Iti_+(l_t<,s l't;r tl_(,+(, t.,,'l)t,+ (+i' l_t'(,l_i(,ttt+ t_,t_ <'it'_'_t],:_r <]()Itl;++litl+). l+it_('+tt'+z+tt, it_tt it_

tl,t" +it'+",t t'+_+t' ]._ t_l'1('t_ jlt+t.]+it'_] w}_('l, ,h'+tlii_:_ witl_ +tt+_-tll +t_t_l)litt_(It' \']l_t',_tti()llS ,,t:}til(, li+it'+tt']7+(,(l



acoustic equations are often employed when considering acoustic fields having sound pressure

levels less than 150 dB (which is the case iu a large number of acoustic an(t st r_wtlu'al a collslic

applications). While weak nonlinearities of the type considered in [7] can also be eflicientl 3

implemented, the discussion here will concentrate Oll the linear case. Moreover, the coefficients

in tile problems of interest will be taken to be Constant or piecewise constant ill nature (this is

certainly a reasonable assumption for many acoustic problems and a valid condition in a large

class of structural applications). Hence we will not address tile use of transform methods for

evaluating variable coefficients and nonlinear corot)orients.

Throughout the discussion, the modeling equations will be apl)roximated in the weak or

variational form in accordance with energy formulations of the problen>. In the structural

application, this is done to reduce smoothness requirements on al)l)roximating elements and
to accommodate structural and material discontinuities as well as unboullded (_tiscontinuous)

input operators. The consideration of tile acoustic problem in weak form proves to 1)e 11set'ILl

when considering coupled structural acouslic systems. Moreow'r, in weak form, some physical

boundary conditions (e.g., the hard wall conditions which we consider here) are natural which

implies that no basis alterations are necessary when implementing the method. We point out,

however, that if the application warrants, al)proximation of the acoustic dynamics using the

strong form of the system equations can just as efficiently be accomplished using the techniques

of tile paper. Moreover, these techniques can be easily modified to accommodate a tau melhod

if dealing with more complex csscn/,ial boundary conditions (boundary conditions which must

be explicitly satisfied in a variational formulation of the problem).

In tile second section of this paper, a 2-D acoustic problem on a circular domain is con-

sidered with a Fourier-Legendre basis being used in the ensuing approximations, in addition

to its accuracy, the use of this basis prow,s to be advantageous in control applications since it

facilitates the maintenance of unifl)rm stability margins under apl)roximation [1]. Moreover,

the tile use of tile spectral basis facilitates at)proximation in a quotient space which is often the

natural state space in acoustic t)roldems.

Tile techniques are then applied to a structllral al)plication in Section 3 with l he probhml

of approximating circular plate dynamics being used to motivate the analysis. In this case,

cubic splines modified to satisfy boundary conditions are used in conjunction with a Fourier

hasis to obtain a suitable finite-dimensional approximation to the problem. The use of spliues

rather than a spectral basis is motivated by smoothness requirenwnts as well as the ease with

which they can be adapted to satisfy e.sscntial boundary conditions, and can easily be change([

if warranted by the form of tile modeling equations and boundary conditions. We emphasize

that when developing a general technique that could 1)e applied in both cases, care was taken to

treat the coordinate singularity in a manner that prevented degradation of accuracy llsing either

basis (spectral or piecewise splines) as well as awfided the introdlu:tion of splu'ious numerical

instabilities.

The techniques from Secti(ms 2 and 3 are then confl)ined in Section 4 where the prol)lem of

at)l)roximating the dynamics of a fully co,q)led structural acoustic system is considered. This

demonstrates the flexibility of the method when studying a more complex coupled physical

system and illustrates the manner throl@l which the basic techniques can be extended to more

general problems. The convergence prot)erties of tile method and its use in delermilJing physical

properties of the system are illustrated through a set, of examples. Finally, advantages of the

method in c(mtrol applications are discussed in the ('oncludinI{ remarks.



2 The Wave Equation

In this seclion we consich'r the 2-D wave equation on a circular domain _ of ra,¢lills a with t,h¢'

1)olln¢tary _h,not¢'d 1)y F. For N¢'untann l_oundary constraitlts and initial conditions Oo and ol.

tlw ¢'qual,ions of motion arc

O, = c_A0 + g(t,r,O)

VO-÷ = 0

O(0. r, 0) = o,,(r, 0)

c,,_(0, r, 0) = O, (r, 0)

, (r, 0) c_,f>0,

, (r, 0) EF,t>0,

(,., 0) c

wlwt'(' O, in a('()ltsti('s applicatiot> [14], (h,tlotes tit(' wqocity t)otet+tial a.n<t c is th<' Sl)('('(t (d"

soun,t. Vv'e not(, that the N¢,mlatm I)oundary conditions are chosetl so as to tw consistent with

the hard wall conditions in the physical al)plication described in Section 4 and can be" alt¢,r¢,d

t,o [it. l.h¢' individual prold¢,ms under investigation.

_li_ ?_;ain insight into the 1,char[or of the solution and to motivate the h_rm of the apl)rox-

[mat.ion, w¢, first solve the equations analytically through a standard sel)aration of va.rial,h,s.

Vor the homopde,,eo,,s ])rol)]em (9 = 0), we take _(l,r,O) = ]/'(t)_(r, 0) to arriv,, at, th,, two

¢lim¢,nsiona.1 l lelmholz equation

A¢+ 2(i,=0 (r, 0) Cft.
('2.2)

V¢.?=0 , (r, 0) E F

and the' relatio,, T"+ _,_7' = 0 , t > 0 . The separation constant here is _)2 = _(})2 where w

is tlw circular ft'eq,u'ncy with 1,nits of tad[arts/see. To find (l), we separate va.t'iatdes once more.

Lel.ti_g ¢(r, 0) = H(r)(-)(0), the (,xl,ansion of Helmholz's equation yields the expression

l d ( dR'_ 1 dZ(-) .y2
r H dr \ '7[rr J + r20 dO2 -}- = 0

which implies that, /¢ and (-) must satisfy the differential equations

ie,+z_.,+_' r2 ] R = 0 2.a)

f¢'(.) = 0 ,

_tll<t

O" + m20 = 0
2.4)

o(0) = e(2_-).

The g,,ncral solution to (2.4)is periodic and is given 1)y O(0) = A_e_'"°,Tt_ = 0,-t-1, +2, ..

Nloreovet', the general soluti,m of llw Besse] equation (2.:}) is H(r) = A2.l,,(tr ) -t- ,,t:,)';,,(')r)

where .1,,, and }';,+ are the m °+ Bessel t'unctiot,s of the lit'st, and second kind, reslwctivcly. :ks

w.>tt'<l in [1], t.lws,:' t'utwt.i,_J_s <tisplay t.}w asyrnt>tc, ti<" tn,havior

z TM 2'"(._ - t)!
.:,,,(:) ~ , }.;,,(:) ~



for fixed m alld = --> 0. Because }'_,+grows utlhollu,h'dlv at. the ot'i_;iu, w,, t,al<,, :t:5 = ¢J it_ ut',lev

t<, g_laratll._,e that tile .'.;olutiot_ rem_dt_,'-; I)<>_itl<l+.dat t' -- (}. rl']., decay pr_q)ert.ies t_[".i,,+ will I,_"

illcorpovat:ed whetl developitlg a u al)l)w>xitIlatioI_ m_'thod for the, l_VC,l,h'tn.

The eigew,'alues 7,,,, of ('-).2) are t.heH ,h'lermiue_l hv a!)l)lyitl_ tlw l_o_u1_larv cotl<liti_J1J au<l

s,,Iviue_.; for t,h," z,'vo., ,,f the u,mliu_,+u' eqlla, t.iotl

d.l,,(>_t)

dr

The ct,rre.spt,ndiug eig_;ew,'ecturs or mu_h,,,, aw' q_,,+,+(v,01 ,1,,( " _'""• ---- _ ......_ }¢ E)Y m -- (). _1. -+-?. - •

_ : 1,2,:L.-. which impliesi.ha.t stm_(tit_:wav(,s havet.h(" form

A varia.t.ion of pat'att_et.er._ alq)roa<h ca.t_ t,het_ ]_' _sed 1o ext.et_<t this tt, I ]1++' IIOIl]lOIll()._'llf'+,Hl_

case. With suitJ_le smoothtwss asmut_l)i+io_s o_ the iuitial co_dit, ious atld fot'ci_ i_,t't_, it ca.u

]_, ._]lowti that, the solutit>,_ to (2. l) ha,'+ t lw ['oI'I11

where the coefl-icie_ts ¢.0......(; del)et_d _,t_ Ou, O_ a.ud the t,iuw-(lel)eHdeul l:o_tvi('v cuelIici('t_l:s _['

_/ (',¥e ref<,r the tea,let t.t, auy st,a udai'<l PDE t._,xt fur d(.tails coucert_i_uz t,he .i_stilicatiu_ of lh<'

formal calculatious uutli wd her(').
lla':it_g out, liued t.he avgum,mt.'-; lea<liug t,o the analytic form of the .solutio., ,:.,,, _,o,:,, ',;'aul t.<>

,_se those results to mot, irate au aplmUl)riate t;_de,'kin technique for a lq)voxitnatit_ the sol,_tiot_.

To fa,'iliiat, e t.he use of this sche_,w i,_ couph,d .st,ructlu'_d aco,tst:ic .sy.st_,ms (s_,,,, for example.

the sysi, em discussed it_ Secl.iu_ 4), t.he weal< form of the ._yst.em equat.iot_s ',','ill I,_' cot_.sid_,r<,<l.

Moreover, to illustrate I,l,, use uf the metho<l whet_ apl)ro×imatit_g if,, a cuust, ic Imt,<mtial (whicl_

is det, ermi_wd to wit, hi_ only a cunstaut [14]), a l>asis s_tiiahh, l'or a <l_,>tiet:, space will I_' cl_os_,u.

To l,C,se the system (2.1) it_ ,.¥eal< form, ,xe take t lw st.at,e i.o [.' 0 i_ t l,' ,slmc<, II = Lz(_)

where L_(_) is the quotieut space of L _ over the co_st.a.ni I'ut_ctiou.s. The' .SlmC_' of t._.st ['uu<'tio_s

is t,aket_ to be the quotietti +'-q>ace_" = ll_(++t). TI,' it+t_'r l)ru_htct, s for ih_' iw_> _l:.a('em at'<' t,al<_'t_

t.u l)(,

= + , =. v:..

(the overl)a.rs here det_ote cott+ph'× ctmjugai.itm as <'ot_l)at'e_l witl_ t l_use lts<'<t al>¢wt' l.o delit_eat_'

the q_tot.ieut st)a.c_'s ). F.twr:Zy <'onsidera.tiut_s or itlt.egra.tiut+ IG+ parts t.]tet+ yit,l_ls the varialio_al

['o1'111

fur all _ itt V.

'T<>di.'.+cret, ize, v,,'e }+egit+ v:ii, h a F<,ut'i<'r _'Xl>at_sitm ill 0 whi<'h yi_'l<l_ the, alq>r<)xitt+at<' sulul,i<m



We point out that the useof the complexFourierexpansionsimplifies the following discussion
both in descril)ing the form of the approximate solution and the constvm'tion of the svstelll

matrices. However, when combining these wave results with those of the circular plate to

yield an approximation scheme for the coupled system (see Section 4). it. is easier to use a

real Fourier expansion when performing the actual computations (this is due to the presence

of the piezoceramic patches on the plate). Tile interchange between the two expansions is

st.va.ightforwavd, and hence details concerning the implementalion of the real Folu'ier scheme
are left to the reader.

Several possibilities exist for spline, Legendre or (:hel_yshev expansions of O,,,(/,r) both in

a collocation and Galerkin setting. These include direct expansions which maintain the parity

of t.he sollltion, refinements to incorporate the decay of the solution at. the origin, and mat)ped

expansions which llso all the polynomials and yield better center resolution. These expansions

lllllSi, satisfy the condition

t) o M
-0

O0

at the origin which guarantees the l|niqueness of the solution. This yields the requirement

&,(t,,') = 0 a.t ,'= 0 , ,,, ¢ 0 . (2.10)

To guarantee ditrerential)ility at the origin, it is appropriate to require that the remaining

component satisfies

-0 at r=0. (2.11)

As detailed in [6], one expansio,l of _,,_(*, r) which satisfies these prope,'ties is

=
7z=0

whel'e

all{[

f '''_" , { f'l(r)- 1/3 , 7_=0,7_= 1
,_ tr)=. t',(r) , othorwis0.

lleve t',_(r) is the 7_t_ Legendre polynomial which has been mapt)ed to the interval (0,,). The

tel'Itl 1)1 (1') -- 1/3 Wllell tl._ = O, l/ _- 1 results from the orthogonality l)roperties of the Legemlre

polynomials and arises when enforcing tile condition f_ _/vf(,,r, 0, z)dw = 0 so as to guarantee

that the flmctions are suitable as a basis for the quotient space. The inclusion of the weight

r I<1 incorporates the decay of the analytic solution near the origin (see (2.5)) while ensuring

its uniqueness at. that point. Finally, we note that if ¥ Legendte functions are used, the limit

_V''' is given 1)y N'" = N + 1 when I,,,I¢ o a,l<t = x when 7/_ = 0, which implies that

= (2M + I)(N ''_ + 1) - 1 basis flirter ions arc, used in the wave expansion.

Summarizing. the approximate solution to (2.8) can be expressed as

M ,,\" '" _.4

°) = Z Z
nt =-- A,I 7_=1 k=l

,5



whereBy(,',O) -t,',l,-,,,,(,.)e,,"= r r n . In comparing the form of this approximate solution with tile

analytic wave solution defined in (2.7), it can be seen that we have essentially replaced the Bessel

components by weighted Legendre functions. This provides an approximate solution which is

more flexible and is quicker to converge in a variety of applications than that obtained with a

purely eigenfunction expansion (indeed, for more complex systems involving wave components,

the eigenfunctions are unavailable and would have to be approximated befl)re they could be

used as a basis).

To provide an approximating finite-dimensional space for the problem, we define the sub-

space H _ = .span{B_} and take the product space for the first-order problem to be 7-/M =

H M x H _. The restriction of the infinite-dimensional system (2.8) to the space 7-/_ x 7-t_

then yields

for _ in H _. The corresponding matrix system is

K20

0

0
oM_o O_"(o)

[o [o1+-K_ o O_(t) C;$(t)
(2.14)

where OM(t) = [¢,(t), qi._(t),..., ¢_(t)] r denotes the Ad x 1 vector containing the approximate

state coefficients. The component matrices and vectors are given by

= fa VBy. VBUa_

£ 1 BYt_Y d_ ,

=jog C 2
(2.15)

where the index ranges are k,.g = 1,- • •, A/l. We note that the presence of the matrix K_-a_ in

the _)aa component of (2.14) and mass matrix is due to the form of the V-inner product.

We point out that the Fourier-Galerkin technique leading to the matrix system (2.14) is quite

general in nature and can be used to approximate wave solutions in cases where the analytic

solutions described at the beginning of this section are unavailable or impractical to use. The

general techniques described here are also easily adapted to different boundary conditions and

more complex systems involving acoustic components. Test cases illustrating the basic method

are given in the following examples and the extension of these techniques to a more complex

coupled structural acoustic system is presented ill Section 4.
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2.1 Example 1

As a first test of this al)t)roximation method, we considered the forced wave equation

¢gtt = (:2AO + .q( t, r. O)

V,)9. i" = 0

O(O,r,O) = (/)t(O,r,O) = 0

, (7.,0) E f_,t>O,

, (r,O) EF,t>O,

, (r,O) _ f_

on the circular domai,l f_ of radius a = 1. The t,'ue solution 0(t, r, 0) =/2[cos(27rr)-l12[sin(30)+

cos(0)] was used to generate the forcing function g, and the prol)lem was then (tiscretized to yield

tile matrix system 12.1.1). The absolute and relative errors obtained 1)y integrating this system

to time 7' = 1 &ll([ COml)a.ring with the known true solution on a imiform nwsh are r('('orde(t

in Tal)le 1. The true sollltion at. that, tim(, iN del)icted in Figlu'e 1 while line plots comparing

the al,l,r(,xi,nat(, and t,r,_e solul.ions along the central line (' = {(x,y) • -1 _< .r _< l,y = 0} are

given ill Figure 2.

Th(, solu(.ioll for this problem was chosen in a manner that allowed us to fix th(' Fourier

limit, alibi examine the ('onvergence as th(, (;a.lerkin limit was increased. The rapid ('oIlvergetlce

exllibite(l l_y the reslllts in Table 1 is ('onsist.ent with that expected from the radial Legen(h'e

])asis. a slight de('re_se in the convergence rate is note(l when N = 15, and we believe that t.his

is due to error in time discretization rather than spatial approximation (a standard fourth/tilth

or(let t/Img(,-t'(ul.ta routine was used 1o integrate the system). Ill this and other examples

t.]lal, we have examined, it can 1)e not.e(l that. as long as the SOlllli(m l_eing a.|)l)roximat(,(t is

sutii('ient]y smooth at the origin, the approximation method performs well and accurate results

can l)e ol)lained with a relatively small nlmll)(w of basis functions. For example, the t)lots ill

Figure '2 demonstrate that while small oscillations near the origin are lm,sent in tile apt)roxiinate

solutions obtained with N = 3 and N = 6, they are gone with larger discretization limits and

if fact, the apl)roximate solution ol)tained with N = 9 is graphically indistinguishable fi'om

the t.rue sohlti(,n. For less smooth functions (e.g., functions that at'(" only continuous and

(lilferential,h' at the origin), some loss of accuracy does occur, although, in applications this

has not ])een a. factor since these types of discontinllities generally (Io not occur in the 1)]lysical

syslems whose dynamics we are simulating.

3 3 54 1.0067 - 0 .1357 - 0

3 6 96 .1-153- 0 .1959 - 1

3 9 138 .1269- 2 .1710 - 3

3 12 1,'_0 .,_567- I .1155- 4

3 15 222 .1912-4 .257_- 5

Table 1. At)solute and relative errors when approximating the wave sollltion

0(_, r,O)=/2[cos(27cr)- l]2{sil,(30) + cos(O)].



True Solution

°1:t
0-

-10

J"" t

0.5

0 Z ''_j'''<'O

-0.5

y-axis -t -1 x-axis

Figure 1. True solution q_tt,,',0) =/2[cos(2_r) - l]_[sin(30) + cos(0)] at tj,ne T= 1.

True and Approximate Wave Solutions

®

Figure 2.

I I"; -oB -o.o -o._ -o'._ o 0'.2 o'._ o'._ o._
x-axis, y=0

True and approxi,nat,, soh, tions, - - (N = 3), - - (N = 6), - (True).



2.2 Example 2

A sec()nd means of testing the accuracy of the mass and stiffness matrices in the system (2.14)

and heilce checking the accura(y and convergence prol)erties of the approximation method is

t)y (liscretizing the eigenvalue prol)lem

A,:I) + .?2(p = 0

V(P • _ = 0

( ee (2.2))

, (r,O) 6_,

, (,., o) e I

which arises when separating variables in l he ]lomogel:leous wave equation. As

(tis('usse(t previously, the eigenvalues 3,,_,_ are determined by solving for the zeros of the nonlinear
system _ = 0 where J,,, is the m °' Bessel function of the first kind. ,";everal values obtained

• " (_1'

with (t-- 1 arc stm_marize(t in Ta.l,h, '2 (see page 343 of [9] for (letails).

To ('omt)are these results with those obtaine(t via the Fourmr-Galerl<ln ext)a.ll_sion , it is noted

that 1ruder a.pl)roximation in weak form, the eigenvahw problem (2.2) yields the generalized

matrix eigenvalue problem

KM_) M = -_ _1,1_'_ _)_0 (2.16)

with (:2 _- a = 1 in the mass and stiffness matrices M;o_ and K_, resl)ectively (see (2.15) for the

deiinition of these ma.trices). The al)proximate eige,lvalues ol)tained by solving ('2.16) are sum-

marize(lin Tables 3 and 4 for the limit choicesM =6, N=6and M =6, N= 1"),. resl)ectivelv.o

With the first (:hoice of limits, it becomes difficult to distinguish the higher order eigenvalues

and these a.re omitted from the table. Vv'e tirst note that with M = 6, N = 12, very accurate ap-

proximations a.re ol)tained with the largest relative error 14..lx 10 -4 ) occurring when m = ,z = 6.

Moreov('r, we see that while the (h,iiniti()n ()f the modified Fourier component 7b (see (2.12)),

whi('h incorporales the analytic (lecay of the Lat)lacian near the origin, changes at m = 5, this

has nol t'('(llt(:(,(t the accuracy of the nletho(t, tlence this exatnple further illustrates the efli('iency

and accuracy of this al)l)roximal.iotl method for the wave equation on a circular domain.

n m = 0 rn = 1 m = 2 m= 3 m =4 m= 5 m = fi

0

1

2

3

4

5

6

1.8412 3.0542 ,1.2012 5.3176 6.,1156 7.5013

3.S317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349

7.0156 N.5363 9.9695 11.3459 12.6819 13.9872 15.2682

10.1735 11.7060 13.1704 14.5N.58 15.9641 17.3128 1S.6374

13.3237 14.8636 16.3475 17.7887 19.1960 ,20.5755 21.9317

16.4706 18.0155 19.5129 20.9725 22.4010 23.N036 25.1839

19.6159 21.164-1 22.6716 2-1.1449 25.5898 27.0103 2,_.4098

Table 2 Values of %,,_ obtained fro,n the Bessel condition _ - 0.
• d?" I

it m = 0 m = 1 m = 2 m.= 3 m = 4 m = 5 m = 6

0

1

2

3

4

1.8,112 3.0542 ,'1.2012 5.3176 6.4156 7.5013

3.8317 5.3311 6.7061 N.0152 9.2824 10.5199 11.7349

7.0159 ,_.537S 9.9714 11.3472 12.6S23 13.9874 15.2709

10.266N 11.7350 13.185,S 14.62N0 16.0386 17.4007 18.7540

13.7669 15.2709 17.2673 18.3866

Table 3. Vahtes of 7,,_,_ ol)taine(l with M -- 6, N = 6 Fourier-(;alerkin basis fimctions.
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n m= 0 m= ] m=2 m=3 m=4 m=5 m=6

0

1

2

3

4

5

6

1.8412 :3.0542 4.2012 5.3176 6.4156 7.501;3

3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7;349

7.0156 &5363 9.9695 11.3459 12.6819 1:3.9872 15.2682

10.1735 11.7060 13.1704 14.5858 15.9641 17.3128 18.6374

13.3237 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317

16.4717 18.0159 19.5131 20.9730 22.4018 23.804;3 25.1860

19.6250 21.1860 22.6929 24.1559 25.59;37 27.0152 28.4223

Table 4. Values of "_,,,,, obtained with M = 6, N = 12 Fourier-Galerkin basis functions.

3 The Plate Equation

A second area in which one must coInmonly approximate the dynamics of PDE-based models

posed on circular domains occurs when nuinerically simulating structural dynamics. While th("

assumption of small amplitude vibrations often leads to linear models, these models are often

sufficiently complex so as to warrant special numerical techniques to capture the physics of the

system. As a motivating example, we consider a thin circular plate having piezoceramic patches

bonded in pairs to its surface (see Figure 3). When a voltage is applied to the t)atches, stresses

are generated which can be used to invoke in-t)lane forces and/or bending moments in the

underlying structure [8]. In this manner, the patches can be used to control plate vibrations [2]

or acoustic sound pressure levels when the plate is an active component in a structural acoustic

system [3, 4, 5]. For the analysis which follows, we assume that the edge of the plate is clamped

since this quite closely approximates the condition found in several applications of interest.

We point out, however, that the techniques which follow are easily adapted to other essential

boundary conditions if warranted by' the physical model.

Piezocenunic Patches

__iT
- _ T

0 a

Figure 3. A thin circular plate with piezoeceramic patches bonded in pairs to its surface.
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For a thin circular plate of radius a having clamped edges, tile strong form of the equations

modeling the transverse motion is

p_,h'u.'t_ + -- +
07 ,2 r 07"

0 w
.,(t,,,,o) = (t,.,o) = o

or

1 i)/t4o 2 02,_To "20.Ad,.o 1 02./Mo

r Or + + + -f(t_,r,O)r OrO0 r 2 O0 7'2 O0 '2 '

(a.1)

'l/Y((), 1', 0) _- 1170(7" , 0) , U)t(0 , I', 0) = 7_1,1(7", 0)

where p; and h denote the density and thickness of the plate and u, is the transverse displace-

merit. The g;eneral moments are given by

Ad,. = .,1,4_-

._4 o = Mo -

_.t4_o = M_o

where

(()2112 I/ ()lU I/ ()2'112 _ (()311) 1/ :)21U I/ 031U

Mo = D \r _ + r 2 002 Or 2 ) + CDkr 0r0t r2 O020Z 0r20t)

2}l"°=l)(l-u)( 102wrOrO0 r21Ou2)O0J + CD(1--u)(lr 07"000l03w 7"21_02w_J

are the internal plate moments (including discontinuous changes ill D,u and CD due to the

bonding of tile 1)atches to the plate - see [8]), and

are the applied moments generated I)y .s 1)airs of 1)atches. With E denoting the Young's inodulus,

EJ? and rel)resent the Poisson ratio, flexural rigidity, and dampingtile l)arameters ,e, D -- 12(l_u?} CD

coefficient for the plate/patch structure, t/ere _i(7", 0) denotes the characteristic function which

has a value of 1 in tile region covered by the i °_ patch and is 0 elsewhere. Moreoww, ui(t) is the

voltage into tile i u_ patch and KTi is a parameter which depends on tile geometry, piezoceramic

material properties and piezoelectric strain constants (see [8] for details). We tsoint out that tile

piezoceramic material parameters KTi,i = 1,- •. ,s as well as the plate parameters Pv, D, cD and

u should l)e considered as unknown and in applications must be estimated using data fitting

techniques analogous to those discussed in [7]. The piecewise nature of the material parameters

and input moments is one motivation for approximating tile problenl in a weak or variational
forlll,

To motivate the develot)ment of a Fouv'ier-Galerkin scheme for this prol)lem, we proceed in

a manner analogous to that used in the last section and consider tirst a simplified version of

the prot,h'nl where set)aration of variables can be employed. To this end, we analyze first the

equation

p_,h_ + DV4w = 0 . (3.3)

11



which models the transversemotion of an undampedthin circular plate devoid of patches and

having constant stiffness and density. Because the manner of solution is similar to that discussed

in the last section, we highlight only those details which are necessary for motivating the form

of tile approximate solution for this problem.

As before, we separate the temporal and spatial variables, in this case taking w(t,r, 0) =

T(t)W(r,O), to obtain

V4I/V = ,74I/V

OW (:_.4)
w(a,0) = _ (,,,0) = 0

and T" + co2T = 0 t > 0. The separation constant is ._4 _ _ where _ again denotes the

circular frequency. A second separation of variables then yields solutions of the form

w(,.) = A,,_J,,_(-v')+ B,,,I,,_(_,.)+ (,,_,,_(_,) + ;3,,,;,;,,(_,.) (:_.,_)

where .Ira and Y,,_ are Bessel functions of the first and second kind and l,,_(z) = i-",l,,,(iz) and
• 71"

I(,,_ = hmv_.,,_7[I_p(_ ) - lp(z)]/sin(p_-) are modified Bessel f, mctions of the first and second

kinds, respectively. We note that for fixed m and z _ 0, these functions haw3 the limiting

2,,_(,,_- _)! 2,,,(,,_- 1)!
71"2 m 2Z m

forlllS

(:/.6)

(see [1]) which immediately shows that the Bessel function and modified Bessel function of the

second kind grow unboundedly at the origin, ttence C,,, and D,,_ are taken to be zero in order to

avoid infinite deflections and stresses at r = 0. Furthermore, the condition W(a,0) = 0 yields

the condition

A,,_ = _B,, I,,_t'A) (3.7)
J,,,(A)

_3w((_, 0) = 0 requires that A solvewhere A = 7a. Finally, the boundary condition-3-7#_

I,,_ (A) d,L,_(A)dr .I,,_(A) dl,,,(A)d,. - 0 (3.8)

in order that (3.5) yields a nontrivial solution to (3.4). By solving (3._), one obtains the eigen-

values A,,_,_ and by coinbining (3.5) and (3.7) with the Fourier coefficients, the eigenfunctions

or modes are found to be

kI/m(", 0)= Jm lm(/_m,_ ) 1,,_ ( Am'zy C imO • (2_.!))
\ a /j

With suitablesmoothness assumptions on the the iuitialconditions,itthen can be shown that

the solution to (3.3)has the form

7i't------O0 ?_,----I

where tlle coefficients w,,_(t) depend on the initial conditions. Again, we note that the motiva-

tion given here is formal and we refer the reader to any standard PDE tex for details concerning

this derivation.

12



Having motivated the general form of the analytic solution for a specific caseof the plate
equation, wecannow presenta Fourier-(_ah_rkinmethod for ai)proximatillg plate dynamics in

the more general cases. As noted a.t the 1)eginning of the section, the weak form of tile system

eqlia.tion (3.1) will he used to accomnlodate potentially discontinuous material parameters.

Moreover, the use of the weal< form atwolnmodates ixnt)oullded input operators (as is the case

when l)iezoceramic l)atches a,re use_t as control elel'nents) a,s well as reduces the sinoothness

rectuiretncnts on the basis functions.

The state for l.he t)rol)lenl is taken to 1)e w and the Hill)ert st)ace tI = LT(Vo) with the
IqlCl'gy ililier l)roduct

(u,, q)H = .tr0 Prhu'Tld?

D

is used as the slate space. \¥e also define the tlilbert space of test functions l." = lf_(F0) -
{,,', c tf2(IY)',i:,(,,,O)= ,,_,",'(,,,O)--O} with the i,,,,er p,'od,,ct

<,,,,,,>,.... / 0,,, / <! >
where Clj = 0 ill the nlonieiits a.pt)earing ill this definition and (F,(;) = fro FGd_i with
d") = rdrdO. As detailed il1 [6], a weak or variational forlll of the equation descril)ing tilt' ll,OtiOll

of a dainl)ed thin circular t)late having .s t)iezoceralnic patch pairs is

[002  aa,
(3.1i)

= fro _ tCiui(t)'i(r'O)V'2'ldT+ 7"0 f_d7
l:l

for all q E V. Again, the internal nionients are given in (3.2

To ol)tain all al)l)rol)riate forln for tile al)l)roxiniate solution, we t)egin with the Fourier

exl)atlsi()ll ill 0

M

,,;"'(t,,,,o)= Z ":',,,(t,")'<''<_.
m = - M

:\s was lhe case when dest'rilfing the wave a.l)l)roxinia.tion , we will use the conlt)lex Fourier

exl)a, nsion wllile (lescril>ing tilt, method Sillt'e it siml)lifies tile nt)tation. Due to the potential

[)l'esellce c)f l)atches or other actuators (711the plate, however; the method is ll,ore easily inll)le-

mented using the real (trigonomelric) expansion (with patches present, the complex exl)ansion

leads to a complex systelYi matrix which proves tro_lblesome when solving the Riccati equation

in the control prol)lcin). We have omitted details concerning the real exl)ansiolls used in the

in_t)lenlenta.l.ion sinc'e it. is straightforward to interchange between the two expansions.

To deterlnine all al)l)rol)rial.e exl)ression for _t;',,_(t,r), we ill'st Ilote that it 1111lstsatisfy the

condit,iollS
i)_bo

.y,_(t,r) = 0 , ._ # 0 Or - 0

a.t r = 0 in order to guarantee lini(tllelless and differential)ility (see the discussion about the
alla]O_OllS r(Xillil'el/lellt for tile wart' sollltion). In light of these reqllil'elllelltS, all at)prot)riate

exl)ansion for uSm(t,r) is
,_r rrl

_b,,,(t, r) = _ .u,,,,At)rI';'1 /7,< (,)....
_,;=1
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whereB;[_(r) is the n tj_ modified cubic spline satisfying B;[_(a)= _ =0 with the conditiondr

= 0 being enforced when m = 0 (this latter condition guarantees differentiabilitv at
d/" "

the origin and implies that N ''_ = N + 1 when m ¢ 0 and N ''_ = N when m = 0, where N

denotes the number of modified cubic splines). The total number of plate basis flmctions is

A/" = (2M + 1)(N + 1) - 1. The inclusion of the weighting term r 1'_0with

0 =01 , m#0

is motivated by the asymptotic behavior of the Bessel functions (see (:1.6)) as r-_ 0. It also

serves to ensure the uniqueness of tile solution at tile origin. The Fourier coefficient in the weight

is truncated to control the conditioning of the mass and stiffness matrices (see examples in [6]).

To simplify notation, the approximate solution is written as

M N m Ar

'" I'_'l"*'r'e ira° 0) (3.12)
m=-M n=l h=l

where/3ff(r, 0) rl,_d _,,_,., i,_0= D,_ _7 )e . A comparison with (3.10) indicates that, as was the case with

the wave approximation, the Bessel components of the analytic solution are essentially replaced

by approximating elements suitable for the problem under consideration. In the wave problem,

tile approximate solution was expressed in terms of weighted Legendre polynomials whereas here

the radial basis is comprised of weighted cubic splines. In both cases, the weights were used to

incorporate tlle analytic solution behavior at the origin into the al)proximate solution, thus guar-

anteeing that it had the correct continuity and differentiability characteristics at that point.

To obtain a corresponding inatrix system, tile N" dimensional approximating subst)ace is

taken to be H ¢¢ = _pan{Bff} and the product space for the first-order system is _H x _"_'.

The restriction of the infinite-dimensional system (3.11 ) to the space _r x 7-fH then yiehls the

matrix equation

1{0 i01 {010 M_ w_(t) : -Kff -I,'_ _'_(_) + b_ _(t)+ p_v(t)

0 1o M_¢ _;_(0) _

where Wee(t) = [w, (t), w2(t),.--, wzZ(t)]T denotes the H x 1 vector containing the approximate

state coefficients. The component matrices and vectors are given by

[_'HD = [i'DI At- [i'D2 "Jc [_.'D3 _- 1_.'[)4 _- ll'D5

Kc2_D _- ]_'cDl Jr- [i'cD2 "Jc [l'CD3 -t- [i'cD4 Jr- ]{-'cDS

,_,k o

o

(3._3)
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where

[I(D2]I,k = D [7.2-- + + d7o o,. r:_ 002 ,. _ j _ '

fp [10B_ _ 102B_[Ix't)3]i,k = O r3 Or + r 4 00 .2
0

dT,

[l,t+d+._= 2 0D(1- ,,) ,.2 aT00 Ta aa j -aTb-gdv,

£ a O.2B_ , aB_] aT_7[l,,,4.k = 2 0D(1-,,) _:_O,.aO+ _ _ J -ag -d_

with tile index ranges are k,/_ = 1,... ,A/'. The matrices/*'_ol - K_s are defined similarly with

the inclusion of the parameter cz_ it_ the various integrals. Finally, we remind the reader that

p_,, D, v and CD are piecewise constant in these definitions due to the presence of the patches.

For application purpose, it useful to note that the matrix system for the plate can be written

as the (:auchy system

_v(t) _-_AVyV(t) + gVu(t) + Gv(t)

YH(O) - Jig (3.14)

where yaC(t) = [Mff¢(/), 142v(t)] = [w,(t),... ,WN(t), _q(t),... ,*bN(t)] denotes the 2N'× 1 vector

containing the generalized Fourier coefficients for the approximate displacement and velocity.

In this ft,'m, tinite-dimensional parameter estimation and control problems can be readily dis-
cussed.

3.1 Example 3

As an initial test of the Fourier-(_alerkin approximation scheme, we considered the undamped

steady state problem

02Mr '20M_ 10Mo 2 02 M_o 2 O M_e 1 02me

Or 2 + r Or r Or + + + - f (r, O)r OrO0 r 2 O0 r 2 00.2

with the nloments given by (3.2). In these expressions, the Poisson ratio, flexural rigidity and

4 and CD 0, respectively. The plate radiusdaml)ing coefficient were taken to be v = ½, D = + =

was take,, to be a = .6 and the tt',,e soh, tion w(r, 0)= (cos(2rr,'/a)- 1)sin(0) was used to

generate the f{}rcing ftmction

.f(,., O) _ r41[3 + (--6rrr/a + 16"x3r:"/a a) sin(2rrr/a)

+ (--3 + 12a.2r2/a,:a+ 16_-4r4/a 4) cos(2rrr/a)] sin(O).
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The absoluteand relative errorsfor this examplearesummarizedin Table5. By choosinga true
solution with a known Fouriercoefficient,the Fourierlimit couldbe fixedat M = 1 and the con-

vergence rate could be observed as the Galerkin limit N was increased. For sufficiently smooth

forcing functions, we would expect the method to exhibit O(h 4) convergence as a result of the

cubic spline basis [18, 19]. To check this, asymptotic errors were calculated by dividing the pre-

vious relative errors by 16. Since the nmnber of radial basis functions is doubled each time, this

provides a means of checking whether or not the expected convergence rate is being maintained.

By comparing the results in the 5 th and 6 th columns of the table, see that O(h 4) convergence

is being exhibited by the method thus providing an initial test in the efficacy of the method.

M N size(Aar) IIw,r_-W_p_ll II_'_-_a_ll Asym. Error

1 5 15 x 15 .4362 - 2 .2181 - 2

1 10 30 x 30 .1454- 2 .7269- 3 .1363- 3

1 20 60 x 60 .6146 - 4 .3073- 4 .4543- 4

1 40 120 x 120 .6717- 6 .3358- 6 .1921 - 5

Table 5. Absolute and relative errors for approximate solutions for Example 1.

3.2 Example 4

A second means of testing the accuracy and efficiency of the approximation method is by dis-

cretizing the eigenvalue problem (3.4) and comparing the approximate eigenvalues and eigen-

functions with analytic values that have been calculated for a simplified structure. This also

provides a means of determining analytic values of tile natural frequencies of a uniform plate

which can then be compared with values obtained numerically and experimentally for structures

involving plates to which patches have been bonded [2] and plates that have been incorporated

in structural acoustic systems (as described in Section 4).

For a uniform undamped plate to which no patches are bonded, approximation of the

eigenvalue problem (3.4) via tile Fourier-Galerkin method described in this section yields the

generalized matrix eigenvalue problem

K_0 X = 74MHt_ ar (3.15)

with the mass and stiffness matrices M ar and K_ defined in (3.13). The plate dimensious

a = .2286m (9in), Pv = 2700kg/rn3, h = .00127m (.05in), and parameter choices E =

7.1 x 10 _° N/m 2 and u = .33 were used which then yields the flexural rigidity D = 13.6007 N • m.

We point out that these choices are consistent with the dimensions and parameters of an

experimental plate currently being used in the Acoustics Division, NASA Langley Research

Center so that the frequencies determined here could be compared with those obtained obtained

experimentally (again, see the application in the following section).

By noting'the relationship f = _w where f is the frequency expressed in hertz and w is

the circular frequency, the natural frequencies of the fixed circular plate can be written as

f = _ pph
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For the given dinlensionsand parameter values,severalfrequenciesderiving from the Bessel
sohltions A to tile lmnlinear equation (3.8), as reported on page 8 of [13], are given in Table 6.

Approxilnate frequencies obtained by solving the generalized matrix eigenvalue problenl (3.15)

with the basis limits M = 6 and N = 24 are tabulated ill Table 7. We point out that in these

tables, tile Fourier number m can be interpreted as tile number of nodal diameters while n is

tile number of nodal circles, not inchlding the boundary. In COlnparing the Bessel and (',alel'kil_

results in the two tables, it call be seen that the Fourier-Calerkin provides accurate mass and

stiffness matrices which translates to accurate approximations to the tlatural frequetwies for

the plate. With the basis lilnits used here, the largest relative error for the fi'equencies shown

here is 8.1 × 10 -4 when m = 3, n = 6. Moreover, we see that while the definition of 7_ in the

weighting ternl r I<l changes at m = 1, tile method loses no accuracy at that point.

To qualitatively test the ability of the Fourier-Galerkin lnethod to accurately approxilnate

tile decay of the solution in neighborhoods of the origin for increasing m, we compared the

analytic eigenfimctions given by (3.9) with tlmse obtained via the Fourier-(;alerkin method

with M = 5 and N = 16. Representative results using the two techniques are plotted in

Figures 4 and 5 with additional examl)les delnonstrating the 3-D behavior, corl'eSl)Ollding 2-[)

slices and error results given in [6]. Qualitatively, the shape of the eigenfunctions in the two

sets can be seen to be graphically identical and, by compal'il_g the results for the (m -- 5, n -- 0)

mode, it can be seen that the approximation scheme is accurately capturing the behavior of the

sohation near the origin, hi combination with the eigenvalues results listed in the tables, this

demonstrates that the approximation nlethod accurately captures the physics of the lm_blem

throughout the circular domain with no loss of accuracy resulting at the origin, in spite of

the coordinate singularity. Moreover, as denlonstrated by the results in the last exalnl)le, the

expected convergence rates are also nlaintained through the use of tile weight r I<1.

7l 711 = 0

0 61.96

1 241.23

2 540.46

3 959.46

4 1498.20

5 2156.69

6 2934.91

Table 6. Natural

m= 1 m= 2 m= 3 m=4 m=5 m=6

128.95 211.56 309.58

368.90 513.02 673.33

728.34 932.93 1154.26

1207.39 1472.15 1753.95

1806.12 2131.29 2473.02

2524.45 2909.31 3311.57

3362.52 3807.60 4269.79

422.56 550.38 692.75

849.82 1042.07 1249.92

1392.14 1646.34 1916.70

2052.63 2367.90

frequencies deriving from the Bessel expansions (in hertz).

n m= 0 ra= 1 m= 2 m= 3 m=4 m=5 m=6

Table 7. Natural

61.96 128.95 211.55 309.52

241.23 368.96 513.04 673.40

540.46 728.35 932.98 1154.31

959.50 1207.4t 1472.31 1754.16

1498.37 1806.28 2131.37 2473.57

2157.22 2525.17 2910.49 3313.05

2936.35 3364.46 3810.17 4273.26

422.56 550.38 692.75

849.83 1042.08 1249.93

1392.18 1646.40 1916.79

2052.83 2368.17

frequencies obtained via tile Fourier-Galerkin scheme with M = 6, N = 24.
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(m =O,n = 1) (m= 1, n= 1)

(m = 2, n = 2) (m = 5, n = O)

Figure 4. The (0, 1),(1,1), (2,2) and (5,0) ,nodes obtained with Bessel expansions.

(m=0, n = 1) (m= 1, n= 1)

(m = 2, n = 2) (m = 5, n = O)

Figure 5. The (0, 1), (1, 1), (2, 2) and (5, 0) modes obtained via the Fourier-Galerkin schellle

with M=5and N=16.
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4 Application- Structural Acoustic Noise Control

In th(' l)r('vious two s(,(_ti(ms, Fouri(,v-(;al(wkin methods for isola.t(,(t acousti(" and structural

systems hay(' 1)(,(,n (h'v('h,i)('(I and illustrated through a set of examples. In this st,orion, a

strlwt, llral acoustic al)l)lica.tion will 1)(, usod to demonstrat(" tho manner thollgh whi('h t.h(.s(,

tt,chni(lu(,s can 1)(, comt)in(,d to yield an (,fh.ctivc approximation sch(,m(, for simulating flu,

(lylm.mi('s of more comph'x systoms. Whon modeling the exp('rimental setup which motivat('s

1his application, car(, was l.akcll I.o in('lud(" the full coupling t)etwet,n the structural (lyn,mics

and tll(, (,nclosod ac(,lsti(: [i('l(t, inlornal damping in the structure, and the efS,ct.s of actuators

slwh a.s piezo('(,rami(" t)alch('s which arc I)on(h'd to t.lw structuro. Tho full inclusion of t,hes(,

COml)Onont.s h,a.(Is t.o, too,h,1 whi,'h a.CCul'alely cat)tufts the physics of the s vst('m but is dilii('_llt

to ai)l)rt)×imat(, using st.a]l(la.rd tn(,lal t('('h]li(lllt,s since modes for t.ho <ollpl(,d system (in('llt(lit_g

couplillg, daml)ing an,t a('tlmt, or (,fh,cts) must. themselv('s l)(, al)proximat<'d since i.ht'y at(' not

kll[.)Wil mlalyli('ally. [!sillg a t:t,lrit'r-(;al('vkin tt'chni(lue, how(,ver, th(" al)l)roximat(' system (',n

t,(' (lirt,ct.lv ('ollstrluq,('(l with s(,v(,ra] (,f th(" comt)onents actually (onsisling of matric('s from tim

isolatc,t a('t,lst.i(' and strll(qura] systt,ms. In addition t.o ilh>lrat, ing th(' m('t.ho(l for th(' Sl)('ciii,"

s(,111t) (h,scril)t'd hot(,, this (l(,rnonsl.rates the fh,×il)ility of the m(q.hod for apt)roxima.ting th('

,lylmmi('s for general s(ructura.1 a.('(,lstic systt,ms having circular or cylindrical g(,omotvit,s.

4.1 The Structural Acoustic System

Th(, structural acoustic system (h'scril)o(l h(,re mo(Ids an (,xperimental setup ('urv(mtly 1)(,in_

us('d ti,' validation o×t)('riments in lhc Acousti('s Division, NASA I,angl('y Research (l('nt('r, and

the g('om(,try and physical st)(,cifi(:a.tions w(,v(, chosen so &s to b(" consistent with thai af)t)avatlls.

Sl)c('ili('ally, the ('xl,erimental al)l)a.ra.t.lls is modeled by a cylindrical domain t_ having l(,ngth C

an,t ra,til> , as I)i('tured in Figur(, 6. At on(, ('nd of the cylinder is a ('lampe(l flexil)l(" plat(' of

(llickn('ss h which is assum('(l to havo K('lvill-Voigt damping. Bonded to tho plat(" aro s(,(:t,orial

f)i(,zo('(.ramic i)atches wllich are t)lac('_l in pairs and ('x('ited ouI-()f-phas(" so that a 1)(,nding

momel_t is t)r()dut:ed wht,n voltage is a.1)l)h'(l. The pa.t('h('s and glue layt'r at(' assumo_t lo have

llticknt'_st's T an(l 7},:, r('Sl)('ctivt,ly.

r=a

Piezoceramic Patches

(a) (b)

Figure 6. (a,)The cylindrical acoustic cavity; (b)The circular plato with patches.
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As discussedin [:3,4], an appropriate linearized variational (e,_ergy)forn_of the coupled
systemequationsmodelingthis setup is

(4.1a)

+ o pvh'wttgldT+ o _Or--7 7+ o -:v*O-_ra'_+r o 7-_M_o-_d7 (4.1b)

+2 fro 1M 027_ 1 M_eOTid.y (..| lb)7 _o_d_ - "ejr ° 7 o_

+ fropf (<rl- _,,_)d_ (.:,.1,-)

= _o _-_ tgiBui( t ))(i( r, O)V2,ldT + /ro fgld'), (4.1d)
i=1

for all appropriate test functions _ and q (this will be clarified below). The ditDrentials here

are dw = r dr dO dz and d'y = r dr dO with the overbars again denoting complex conjugation.

We now consider the components of the equations and compare with those found previously.

Throughout this section, the subscripts p and c will be used to &mote plate and waw, (cavity')

components, respectively.

Acoustic: With q5C L2(_) again denoting the acoustic w_locity potential, the wave dynamics

are contained in (4.1a) where the test fimctions _ are elements in II_(_) (see Section 2

for details concerning the Hilbert spaces for this problem). When approximating the

dynamics of the system, the 2-D basis described in Section 2 is tensored with an axial

Legendre basis to yield the approximate solution

= Z E E
p=O m=-:lqc n=o

,-,_, _,,)P,,(=)

where again,

{m , ]m[=O,.--,,55 , ]ml = 6,'",Mc

and

Pl(r)- 1/3P,V"(") = p,(r)
, p=m=0, n= 1 vz',"_ f N_+ 1 , p+[m[¢0

, otherwise N_ , p=m =0

Here P,_(r) and Pp(z) are the u.t_ and pth Legendre polynomials which haw been mapped to

the intervals (0, a) and (0, D), respectively. We remind the reader that the term & (r)- 1/3

when p = m = 0, n = 1 results fi'om enforcing the condition f_ ¢_(t, r, O, z)&o = 0 so as

to guarantee that the functions are suitable as a basis for the quotient space while r I<1

incorporates the analytic decay at the origin with zb, truncated to control conditioning.

2O



Structural: Equation (4.1b) contains tlle internal ])late dytiamics while the external contribl>

titres due to the perturbing noise source f and the excitation of the patches are contained

in (4.1d) (compare wii,h (3.11) in the last section). As was the case when the isolated

l)late was (:onsi(t(we(l, u, (Z L2(F0) denotes the transverse displacement and the test fut',('-

tiov> v/ are taken in /t2(F0). \Vhetl discretizing the s yst.enl, the plate displa.('entet_t is

approxitnat(,(t 1)y u:H(t, r,O) as defin(,<l in (3.12) with Mz, and :\'_, used her<' i.o det_ot(' the

Follrier and spline limits, respe<'tively.

Coupling: The (:(nu)ling 1)etweetl the plate d.ytmmi(_s all([ interior a('ollst](" field is incorp(Jrat(,(l

1)v including the I)acl,:l)resslm' pJOt(l, r, O) [I'Otll the interior fiehl as a for('e on the plate

and asslmling the ('ot_t, itlllily of v(qocity ('otl(liti()n

Oc)
--(t, r, O,O) = -,_,_(t, ,', O)
i)z

at the slu'face of the plate (this latter condition is often designated the nlomentum con-

(liti(m in the literat.ltr(,). In t.he weak form of the system e(luations, these ('otl(litions are

matlifest.ed as the first and s(,(:ond tertns, r(,spe('tively, in (4.1(').

Wit]l the compon('tlts thus <h,s('ril)ed, we are now in a position to form the matrix system

which results whet) the system (tytm, tnics are al)t)roximated. The X" = (2M v + 1 )( N,, + 1) - 1 and

,_'l = (2-_,1,. + 1)( N,. + 1)(t',. + 1) - 1 dimensional approximating plate and cavity sul)spac('s are

laker, (.(, 1)(. tt;_,'" = span{ H:"}:_:, and I1(.v_ = span{ Hy }:vJ_,, resp(,ctively, where/q:"" at,d B_'v_ are

the S _ plate and cavity 1)ases <l(,s('ril)(,(t at)or(., l)efining ? = A,,r + ,_4, the apt)roximating stal.e

spa('(, is tt _ = tt_ _ x 1t_," and the l)ro<luc(, space for th(. first order system is 7-{"r' = H _' x tI _'.
The restriction of the intinite-(tim(,t>iotml system (4.1) to _' x 7-g*' then yiehls the matrix

s.ysl,em

:_F_O_'(t) = A_'S(t) + fF,,(:) + U'(t) (4.2)

J_P+:,/_'(0)= :,}_.

tte,-e:/'(t) = [0+'(_),w +,(_),0+'(_),_,v (_)]r with the ,',,,,,p,,,,e,,t.._,_v(_) = [<,[(_)... <,_(_)]+.
at,d W_'(_) = [.,,?,(_),...,,,,_.(_)]_,d,.,,()t(,._the app,',,xi,,,at.,'._tat_ve('to,",'o,,m<'i,',,(._while
_t(l) =[ut(/),.-., +t_(t)] w (-ontaii_s the ._ l)atch inl),|l variat)les. The system matrices and ve('t(,rs

ilt'e

a|l(]

,'I,I;r' =

_'Ira z

3.1++''"

A_ =

F ."I

\¥(' now sel)arate the rnatri('es into those containing a('ousti(', st.ruet)tral and coupling ('Oml)O-

twnt.s to l)etter illustrate the cont_ections with those (]eveloped for the isolated a.('oust.i(" an<l

str_tctural t)r()t)lems in the previous se('tions.
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Structural: The .IV"x A/"componentmatrices Mar, KDX and K_ are the mass, stiffness and

damping matrices which arise when solving tile damped plate equation with fixed bound-

ary conditions while tile N" x 1 vectors/)_ and F.2w(I,) are the eorrespondi,lg control an(t

forcing terms (see (3.13) for tlle various definitions).

Acoustic: Tile M × M matrices Mro_ and K_ are the mass and stiffness matrices which

arise when solving the uncoupled wave equation with Neumann boundary conditions on

a cylindrical domain. As a results of tile tensor properties of the 3-D basis, they can be

succinctly defined as tile tensor products

= ]M

where M_Mooand I(_o are given in (2.1,5) and the (/)_. + l) × (P_. + l) matrices M: and K:

are defined by

[i l,j= [K:],j=

The construction of M_o'_4_and "_1_,.o= is completed by updating the row and cohmm affected

by the alterations used to guarantee that the functions are a basis for the quotient space.

Finally, 0_(t)is a forcing term which incorporates any acoustic sources (see (2.1,5)).

Coupling: The contributions from the coupling terms are contained in tile matrices

e,i = -Pl A 7_ By_d?
o _ p,k o

where Bi v" and B_ are plate and acoustic basis functions, respectively, and the index

ranges are k,g = 1,... ,M and i,p = 1,... ,.IV'.

Initial Conditions: The vector _)_ [g_ _ ar---- 'g2 ,gl '(,(]2N'] T (see (2.15) and (3.13))contains the

projections of the initial values into the approxinlating finite dimensional snl)spaces.

\¥e point out that several of the component matrices are identical to those defined when

considering tile isolated acoustic and structural systems while others can be efficiently con-

structed from those components through basic operations such as tensor products. In fact,

only the coupling matrices A_1 and A_ containing quadrature values for the plate and acoustic

bases must be constructed solely for this problem. This potential for decomposition into exist-

ing structural, acoustic and coupling matrices also exists for more complex structural acoustic

systems when a Fourier-Galerkin approximation scheme is used and is a further advantage of

the method in coupled problems involving linear oi" weakly nonlinear components.

4.2 Example 5

As a first test demonstrating the convergence of tile method for the fully coupled system, we

considered tile problem (4.1) with tile dimensions a = .6, h = .00127, g = 1.1 and t)m'ameter
Eh 3

choices Pl = 1.21,c = 343,pp = 2700, u = .33, D - 12(1__2) - 13.6007 and CD = .00011222 (the
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effectsof the patchesare neglectedin this examplebut will be incorporated in Example 6).
The true solutions

w(,.,o) = - t)si,, 0

0,_-)= t)=(e- =) sin 0

were use(t to generate forcing functions .f and g on the plate and in the cavity, respectively (see

the convergem:e tests in Sections 2 and 3). The resulting matrix system (4.2) was then integrated

to time 7' = .1 and the al_solute and relative errors in the plate dist)lacement, potential and
t " ]

pressure at that time were calculated. The results for four sets of (,alerku limits are reported

in Talfles 8, 9 and 10. In these tabh's, the subscripts p and c in the tables again refer to the

plate and wave (cavity) indices, respectively, and the measurements were made on a 30 x 30

grist ou the plate and a 10 x 10x 10 grid in the cavity. As demonstrated by these results, the

method for the fully coupled system is exhibiting a convergence rate similar to that noted when

the individual components were tested. Moreover, sufficient accuracy is obtained with tractal:,le

matrix sizes so that physical details are captured when the approximation method is used to

simulate system dynamics and develop feedback control techniques. Finally, we point out that

in spite of"t.he fact that we are approximating nonaxisymmetric solutions, the computations for

this example could be performed on a Sparcl0-class workstation.

1 5 1 2 2 S6 x s6 .4366 - 5 .2207 - 2

1 5 1 4 4 1,_2 x lS2 .4294- 5 .2171 - 2

l 10 1 6 6 356 x 356 .2674 - 6 .1352 - 3

1 20 1 s s 60Sx60S .15S8-7 .8030-5

Table 8. Absolute and Relative Errors in Plate Displacement at T = .1.

1 5 1 2 2 S6 x S6 .3132 - 2 .3569 - 0
1 5 l ,1 4 1_2 X lS2 .1545 -3 .1760 - 1

1 10 1 6 6 356 X 356 .9554 - 5. .1089 - 2

1 20 1 S S 60S X 60S .2251 - 6 .2565 - 4

Table 9. A1)solute and Relative Errors in Potential at T = .1.

1 5 1 2 2 s6 x s6 .7573 - 1 .3566 - 0

1 5 1 4 ,1 IS2 x lS2 .3739- 2 .1761 - 1

l 10 1 6 6 356 × 356 .2312 - 3 .10,_9 - 2

1 20 1 s s 60s × 608 .5453 - 5 .256s - ,1

Table 10. Absolute anti Relative Errors in Pressure at. T=.I.
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4.3 Example 6

In this final example, the numerical techniques just described are used to simulate the system

dynamics of the experimental structure described at tile beginning of this section. A co'ninon

technique for determining the dynamics and natural frequencies of COul)led structural a('oustic

systems is to subject the structure to an impulse (through an impact hammer hit or a voltage

spike to the patch) and measure tile resulting time and fl'equency responses. I-ly exciting tile

system in this manner, a wide spectrum of frequencies can be excited an(t various system

properties determined. Because there is no acoustic source inside tile cavity, 5/ = 0 in (411a).

Tile hammer impact can be numerically simulated by a triangular force f to a point on tile

plate while the voltage spike carl be approximated by a short duration triangular voltage ,; in

1)oth cases, tile approximate system response is calculated via (4.2).

In order to remain consistent with tile experimental setup being modeled, the length and

radius of the cavity were taken to be 1.0668 m, (42") and a = .2286 m (9"), respectively with a

plate having thickness h = .00127m (.05") mounted at one end. A pair of circular piezoceramic

patches having thickness T = .0001778 m (.007") and radius tad = .01905 m (.75") were located

at the center of tile plate (see Figure 7). Tlle physical parameters that were chosen for' the

structure and acoustic cavity are summarized in Table 11. The flexural rigidity l) for the plate

was obtained using tile "handbook" value E = 7.1 x 101° N/m 2 for the Young's mo(hdus of

ahmlinum. The remaining choices are comparable to values folltld when estimating parallleters

for the isolated plate with a similar patch configuration [2]. We re-emphasize that in general,

these parameters must be determined through parameter estimation techni(lues in order for

tile PDE model to fit tile actual physical systenl under consideration. As demonstrated in [2],

tile Fourier-Galerkin scheme presented here l)erformed well when in('orporate(t in a Ill-to-data

routine for determining physical plate parameters thus yielding a model w}lich could be used

fl)r implementing model-based feedback control techniques.

to = 1.0668

ct I1
9

a = .2286

Figure 7'. The acoustic cavity with a pair of centered circular patches, the iml)a(,t point

I1 = (.13, _) and the observation points pl = ( 125, _) and cl = (.125, _,.05)." 3 . ,
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Structure Acoustic(?avity
Paranmter Plato Plate+ Pzt Parameter (:avity

1.21pp • Tkick n_._._ (kg/71121

D (.V • 711)

ell (,4" . ,i.._cc)

1/

_,:k (,_:/v )

3.429 3.-189

13.601 13.901

1.150-d 2.250-4

.33 .32

.0267

343

Table 11. Physical Parameters for the structure and acoustic cavity.

Voltage Spike to a Centered Patch Pair - Axisymmetric Response

As a tirst exalnple demo_lstratinp4 th(, resl)onse (If the syst(,m model to a simulated impact,

we al)l)lied a triailgular voltag(, spike u(t) as input to the patches and integrated the matrix

system to obtain a time history of the rest)onse. Because the patches are centered ()n the

l)late, the response was mlii'orm in 0 which implied thai the Fore'let limils could I)e taken to

l)(, +/l1, = +U(, = 0. The t'emaitlitlg limits were taketl t() be '\+7) = 1'2, +\+c = 9 and P,. -- 9

(these vallles resolve t lie range of freq,lencies 1)eiIlg examin(_(1). A time history of the system

r(,st)c)nse throughout the interval [(1, .5] was calculated at the plate and cavity points pl =

(.125, _)an(I cl --(.125, _,.05) (see Fi_;ure 7), an(t the resulting trajectories a,,d frequencies

are plotted in Figm'e S. This temporal interval was chosen since it was sufficiently long s() as

t(_ _temonst.rale the system dynamics but short enough so that the higher frequency resl)OnS('S

were not completely lost. The off-center ()t)servation points were chosen to demonstrate tile

_eneralib' of the meth(M an(l t)rovide a basis for comparison with the nonaxisymm(,tric resltlts

in the next (,xamt)le. Finally, the system fre(llwn('ies are summarized in Tabl(' 12 with th('

notati(m p and c 1)ein_; ilsed to designat(' l h()s(, frequencies whi('h are observed at the t)late

point pl and cavity point el, resp(,('tively.

To delermine the effects of coupling, internal plate damping, and the presence of the patches

(m the .system, it is illustrative to compare the system results listed in Table 12 with those of

the is(,late(t components. In Section 3, the natural fre(luencies for an isolated and _m(lamt)ed

plat(" were ol)t.aine(l. The natllral fre(im'ncies for the isolate(_ wave equation in a cylindrical

cavity can 1)e (l(_termine(t I)y separating varial_les in the 3-D wave equation havin?_; Neumann

1,(,mdary con(ti_ions. This lea(Is to a 3-l) tlelmholzequation which, after an analysis similar

t.o that. 1)resente(l in ,Section '2, yields tile nat_tra.l frequencies

f ..... , = 2_c + \ " /

where p = 1,2,... , m = 0,1,2,... , _ = 0,1,2,..- and )_,,_ = _ ..... , are zeros of (2.6) (see

[3, 6, 9] for ,l(q, ails), t:or th(' l)rovi()usly ment, i(me(t dimensions, the fr('(luenci(,s of axisyn_metric

modes (_/ = 0) are liste(t along with those for the isolated and un(taml)(_d plate in Table 13

(see Tables 2 and 6 for a compilation of the zeros %,,, and natural fre(tuen(qes for the isolated

t)lat.(_, rest)ect, ively ).
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By comparingthe valuesfor tile individual plate and cavity in Table 13,with the system
harmonics in Table 12, it can be seen that although the frequencies agree quite closely, there

are slight differences due to tile fact that the system (4.1) involves not only coupling between

tlle plate and cavity but also includes damping in the plate. Specifically, the system frequen-

cies associated with strong plate responses tend to be slightly less than those of tile ,mcoupled

and undamped plate while those system frequencies associated with strong acoustic rest)onses

are slightly higher than the natural acoustic frequencies of an isolated hardwalled cavity hav-

ing these dimensions. Hence, through the Fourier-(Ialerkin method, t)hysical characteristics

about the system are determined and differences between the coupled system resl)otlse which

in(:ludes damping and tile isolated, undamped comt)o)wnts are illustrated, q_'his latt(w ol)ser-

ration also indicates the ditli('ulties which would .be encountered if one were to at, tenll)t to

simulated the coupled system dynamics using modes for the isolate(l systems.

p,c

P

]), C

Natural System Frequencies

59 p,c 164 [ c

240 p,c :3241 c

537 p,c 493 I c
c 6451

c 8,071

915

929

971

Table 12. System frequencies obtained with M v = 0, Np = 12, M: = 0, Nc = 9 and P,. = 9

basis functions; p- frequencies observe(| at the plate point pl = (.125,4rr/3),

c - frequencies observed at the cavity point cl = (.125, 4rr/3, .05). System freq-

uencies can be compared with tile ordered frequencies of tlle isolat(',t and un(lampe(l

plate and cavity given in Tab]e 13.

Plate (fm,_)

(0,0) 62 (0,0,1)161

(0,1) 241 (0,0,2) 322

54o (o,o,:3) 4s2
(0,3) 959 (0,0,4) 643

(o,o,5)
(0,0,6) 965

)
(0,1,0) 915

(0,I,1) 929

(0,1,2) 970

Table 13. Axisymmetric natural fre(t,,encies for the isolated and undamt)(,d plate and cavity
(in hertz).
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Figure 8. Thr plate and 1)T'ess.r(_ responses to a voltage spike.

Noncentered Hammer Impact - Non-axisymmetric Response

As iu(ti('a_ted previoltsly, a serond m('ans of exciting the system is thro.gh a hammer impact

which ran I,e modeled by a sl]ort txiangular input force. To demonstrate the at)l)roxima

t ion of grneral mmaxisyt_metric system dynamics, this fi)rce impulse was applied at the point

II = (.130, _), and a time history of the system response for the time interval [0,.5] was cal-

cldalrd at t l.' platr au_t ('avitv points pl = ( 125, 4_) and cl = (.125, 4,_• -g-, .05), respectively (see
• , 3

l"iglu'r 7). Thr res.lti.g acoustir press.re and plate accrleralion are plotted aloug with 11., col

responding frequenry responses in Figure 9 (the plate _wceleration models data that wo.ld 1_<+

experimentally o]_taiued with an a('celerometer, [2], and more clearly demonstrates Ll]e higher

ft'equeiwies tllazi doe,4 the plate disl)lacemet]t ). To resolve the frequencies below 1000 het'lz,

the basis limits were taker] 1o I)e ,'tlz, = 4, '%_t= 1'2, ,_'Ic = '2, ,%_,--- !) at.I f_ = 9 which yiel<h'd

1230 t'tJei|icients it_ the systrm (1.2). As tle]noustratett I)5' this chtfit'euflimits, the mzml_er uf

Voltt'ier coef[icirnt,4 it+ the plate and wave <.xpat]siotts ran be chosetl to, (lifter in or<h+r to t'r(h.+e

sy+Ictt] siz(,s alth,uu_h care mtist 1)e t,aket+ wh('. (]oitt_ .'.+o ,'-;it+<'e Lhc sysl,em t'eSl>tmse rc, ntai]_.'.+

('ollt,t+il)llti()ll,4 t'r(,tll 1)()th t,h(" plate and wav_, ('(+tnt)(m('t]ts.

Thr sy:t,(,m ft•,_+(l.,_'_('i('_ are ,'.+_tt++t+',<_tt'iz(,(1i1_ Tal)le I,I vvhet'e aga, itt. the ttot, atit)_ p aa+.l (+at('

_ts(,,t t_, ([esi<ttate those fre(luen('ies which ar<' ot)serve(l at the plate and cavity t)(>int pl and el,

r(,sl_(,(:tiv(,ly. For ('(m_l_ariso.. ('(_rz'_+Sl)on(linpg uat_tral fre(tueu('i(,s for an isola_(,d and un(tamt)('(t
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plate (seeTable 6) and an isolated acoustic cavity (see (4.3)) arc compiled in Table 15. By

comparing tile results in these table, it can be noted that six system modes corresponding to

those of the isolated plate are excited with four of these responses being obserw'd at l)oth the

plate and cavity points (we emphasize that because these arc truly system modes, the remaining

frequencies of 240 hertz and 422 hertz can also be measured in the cavity at various points: the

response is simply weak at the point el). Similarly, nineteen system modes corresponding to

those of the isolated acoustic cavity are excited by the nonsymmetric impact with the strongest

response in the asymmetric system mode having a frequency of 460 hertz (this corresponds to

the ( 1,0, 0) mode for the isolated cavity,). As was noted in the t)rcvious example demonstrating

the symmetric excitation, the system frequencies associated with strong ])late responses tend

to be slightly less than those of the uncoupled and undamped t)late while lhose system fre-

quencies associated with strong acoustic responses are slightly higher than the natural acoustic

frequencies of an isolated hardwalh'd cavity having commensurate dimensions. We reiterate

that these differences are due to tile COul)ling between the plate and cavity as well as dampinp;

in tile plate. This again provides motivation for considering a general Fourier-(lalerkin method

of the type described here when approximating the dynamics of a complex coupled system.

The effect of coupling and damping are implicitly included ill this approach while they must l:,e

explicitly (and occasionally artificially) enh)rced when eml)loying modal approaches using the

eigenfunctions of the isolated coral)orients.

Table 14.

Natural Frequencies of the Coupled Structural Acoustic System

p,c 59 p,c 209 c 164 c 929 c 915

p 240 . p,c :t24 (" 971 c 730

p,c 483 p,c 440 c 748

c 645 p,c 470 c 79S

p,c 127 ' c b;07 p,c 546 p,c ,_75
9"p,c 365 p 422 p,c 653 c . _1

c 915 c 781

System frequencies obtained with My = 4, Np = 12, M_ = 2, N_ = 9 and t_ = 9

basis functions; p frequencies observed at tile plate point pl = (.125,47r/3),

c - frequencies obserw_d at the cavity point cl = (.125,4rr/3,.05). System fre-

quencies can be COml)ared with tile ordered frequencies of the isolated and un-

daml)ed plate and cavity given in Table 15.

Plate (f,,._)

(0,0) 62 (2,0) 212

(0,1) 241 (12,1) 513

(0,2) 540 (2,1) 933

(0,3) 959 (3,0) 310

(1,0) 129 (3,11 673

(1,t) 369 (4,0) 423

(1,2) 728 (4,1) _50

Table 15. Nonaxisymmetric natural

cavity (in hertz).

Wav, 
(0,0,1) 161 (0,1,1) 929

(0,0,2) 322 (0,1,2) 970

(0,0,3) 482 (1,0,0) 439

(0,0,4) 643 (1,0,11 468

(0,0,5) s04 (1,o,2) 54.5
(0,0,6) 965 (1,0,31 653

(0,1,0) 915 (1,0,4) 779

(1,0,5) 916

(2,0,0/ 729

(2,0,1) 7s0
(2,0,2) 797

(2,o,a) s74
(2,0,4) 972

frequencies for the isolated and undamped plate and
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Figure 9. Tilt 1Hat(' all,l prcssur(' resp(,],s('s to an iml,a('t, at (.13. rr/_).

5 Concluding Remarks and Control Applications

Itl lllis i)al)rr, a (;ah.rkitl method for alqmJximalit,g il.. (lynan_ics of lin('ar or weakly nonli_,('ar

s.\st(.n> in ,'ir(.llar gco]m.lri(.s is l.'('srt_Ic_I. \\;hih, l hr n.q,l.,_l is I_]'('s('tJl,_'(] for linear _.'ollstic.

str].'llllal at_,l slrl.ql|ral ac,:.L.-;lic im_14rms, lhr le('hni(ll.'s at(' .,-;llflMcnt, lv g_.llrral s,. as 1. 1,{.

_-iI_l,li,al,h' ill a large ','aricl,v of aF,F,ti_'aliolls i.volvin_ the atqJroximaliot_ of lil..ar or .,vr,_Jklv

Ii()lllill('ar ._._t)_'l';-iI(:,l','.., .t_ll ('il'('ll]al tl(;,nlaill.'-;.

'1'_ lal<c a_lvaI_la_c (H' l_Crio(licil\'. Iq._ricr CXl,al_si,.t_s ,_rc first l|s_,,t t,u al)l)roximalr ltm tall-

,_cIllial 1,ch_,.'i_.' _,t' lh(' s(,ll_li,.,t_. TI.' ('r,_x _,t' the' m,_'lho, t t l..ll i.volvr:-; ll.' ('(,_l....r_clio]_ ,.,f

l'_-.ti_-_lt,asis t'l_]l('ti(,.s I,3" colnl,itlit_g tra(lili,.,t_al al)l)rc, xil_atil_ t'_ul(qi(,l> (tit]ilc ,_'h'lt.'nts. pi('c('-

wis(' spli_.'s, spectral lnH.vt..ni,_l.-;) wilh l(.rms of lhc t];,rtt_ r I';'1 ,,vhrr,p z;_ is a lrl]n(','dc_l F,..tricr

('_)cllici_']ll a]_(I lh(' coot{Ill,at(' si]_gl_larily is ass_lt..d l,o I.. al l,h(' origin. Tllis lal,l_:'r l('rt__ itl('or-

In.al('s tile _l('(ay F,r(H)(.rti(.s (;,f t,llr l{css('l or arealvii(" s(,l_|;i,_._ m'ar t].. ,.)rigi. a.,1 is i]lcll.h.,1

st> as it> _4_al'_I_lrr that |h_' al_l)r_xinlat,r sol]_tion is _lli(l_.' ai.1 ,litl'rr{'Ilti,_l,l,_' .-it It.' ,'oor, li-

]_alc si._lh-lri% T1]_' lrl]t_cal,iot_ ,.H' t,hr Fo_rirr co('flicieI_l i>r,.rcidcs a n..a.s of c,.mlr,.llin_, _t.'

is a_cl_Ial_.. _.flicic.1 _t_,t s_]fticict_tl',: th'xitHc so as to I.. ,'asilv cxlct_(h'<l 1_, co_l_lHCX c,.._lHc_l

'2!)



systems. By varying tile choice of radial basis functions, the method can t,e tailored to a

variety of applications and boundary con{litions while the inclusion ¢,f the (lecay COlll])Ollelll, ?d'hl

guarantees that accuracy is maintained throughout the entire circular domain for sllfliciently

smooth system inputs. Hence the Legendre 1)olynomials and modified cubic splint,s, use, t ill

this presentation to approximate acoustic axld st, ructllra[ {[ynalnics, can easily be replaced I)y

other spectral functions, splines or finite elements as warranted by the situation.

A final advantage of the method arises when the lq_lu'ier-C, alerkin techniques are llsed to

compute feedback gains in optimal control problems. As discussed in [5], where the method was

incorporated in a control scheme fox" reducing noise in a cylindrical coupled structural acollstic

system, the optimM control problem for reducing a periodically driven state = in the state sl)a.ct_

can be posed under approximation as that of determining a suitable u in a control space / /
which minimizes

l f0"

subject to z _ satisfying the matrix system of dimension _ which results when the equations

modeling the system dynamics are discretized. Here 7- is the period and Q_' and R "p are matrices

which can be used to weight variolls cOral}Orients of the approximate state and control. As noted

in [5], a suitable choice fox" (2*', when an energy inner product is associated with the state space

7-/, is a diagonal multiple of the mass matrix M _' which results when a (lalerkin method is used

to discretize the weak form of the system equations. Since the mass matrix constructed in t.llis

manner is the identity with respect to the emwgy imler 1)roducl., the choice QP = T}-_.i r', 1"} a

diagonal weighting matrix, in (5.1) minimizes a weighted measure of the state energy, thqlce a

Fourier-(lalerkin method of the t.ype described here can also 1)(, advantageous when calculating

feedback gains for experimental and numerical implementation of ot)timal control techniques

to probh'ms posed on circular geometries.
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